isolated$41062$ - перевод на голландский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

isolated$41062$ - перевод на голландский

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated      
adj. afgezonderd; uitgesloten; eenzaam; alleen
isolated case         
ALBUM BY THE VAPORS
Isolated Case; Daylight Titans; Johnny's In Love Again; Can't Talk Anymore; Silver Machines; Galleries For Guns; Jimmie Jones (song)
n. geisoleerde zaak, zaak gescheiden van andere zaken, situatie anders dan andere situaties
low blood pressure         
  • center
ABNORMALLY LOW BLOOD PRESSURE
Low blood pressure; Low Blood Pressure; Low blood-pressure; Hypotensive; Low BP; Intradialytic hypotension; Chronic hypotension; HoTN; Drop in blood pressure; Postprandial hypotension; Isolated diastolic hypotension; Causes of hypotension; Controlled hypotension
lage bloeddruk

Определение

Anencephalous
·adj Without a brain; brainless.

Википедия

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.